

What influences the amount of drawdown?
Why is there more drawdown in some places than others?

• Well density and well interference
• Pumping rates
• Hydrogeologic setting of the aquifer
• Transmissivity
• Aquifer thickness x hydraulic conductivity
• Confined or unconfined settings
• Confined aquifers – low storage
• Unconfined aquifers – higher storage
• Recharge rates
• How rapidly the aquifer is replenished – shallow aquifers generally replenished faster than deep aquifers

Summary — Dane County In Dane County, we pump about 50 MGD from the sandstone aquifer There is a regional cone of depression and well interference Maximum drawdown about 70 ft Visible/measurable impacts on surface water Some water quality degradation due to induced recharge

Groundwater issues in Southeast Wisconsin

- Groundwater levels are declining (400-800 feet)
- Increasing groundwater demand
- Declining water quality (salinity, TDS, radium)
- Great Lakes water is off limits outside topographic basin

Water Levels in the Sandstone Aquifer in SE Wisconsin from 1862 to 2002 – results of model simulation

Effects of pumping: Pumping from the sandstone aquifer has reversed the direction of flow in the deep part of the flow system below the Lake Michigan coastline. From 1864 to 2000, pumping caused a 7% reduction of direct and indirect discharge of shallow groundwater to Lake Michigan.

Consequences of development...

- Downward flow to sandstone aquifer from above (lakes, streams, and recharge) has increased by 18.3 mgd
- Flow to Lake Michigan has <u>reversed in</u> <u>some places</u>; the total change in L. Michigan flows is <u>6.9 mgd</u>
- Wisconsin loses about <u>2.5 mgd</u> to N. Illinois

73

Summary - SE Wisconsin

- In SE Wisconsin, we pump about 50 MGD from the sandstone aquifer
- There is a regional cone of depression and well interference
- Maximum drawdown about 500 ft
- Few measurable impacts on surface water
- Major alteration of groundwater flow directions
- Some water quality degradation due to upconing of older water

74

Conclusions

- Wisconsin has wonderful aguifers!
- All water comes from somewhere...you can't get water without consequences somewhere else
- Consequences include
 - Drawdown
 - ◆ Reduced aquifer yield
 - Higher pumping/energy costs
 - ◆ Reduced flows to surface water
 - Possible water quality impacts

75

Visit us on the web at: http://www.uwex.edu/wgnhs/

76